Modules of Classes and Examinations, Odd Semester - July to Dec. (2023-'24) CCFUP 3 Years Degree in PHYSICS Hiralal Bhakat College

Semester-I Course Type: Major Course No.: I Course Title: MATHEMATICAL PHYSICS-I Course Code: PHYS 1011

Evaluation process is divided into three (3) components, viz. C1, C2, and C3.

Total Marks: 75 (10+5+60), Credits: 4, Lecture Hours: 60

10 Marks for Internal Assessment (will be organized by the College in general and Department in Particular), that is **C1**. 10 Marks will be evaluated through **Class Test** or Assignment or Seminar. Appearance in **C1** is mandatory.

Marks division of Class Test will be 10 or **5+5** or 2+2+2+2+2.

Tentative **Date** and **Time** of Class Test or Assignment or Seminar: During the end of the 10th week of the semester when approximately 60% of the syllabus of course is to be completed.

5 Marks for Attendance that is **C2**.

Attendance: 50% & above but below 60% - 2 Marks Attendance: 60% & above but below 75% - 3 Marks Attendance: 75% & above but below 90% - 4 Marks Attendance: 90% & Above - 5 Marks

60 Marks for Semester-end-Examination (will be organized by University), that is **C3**. Syllabus: Whole

Duration: Two Hours

Question Pattern:

- Answer 5 questions out of 8 carrying 02 marks each = $5 \times 02 = 10$ marks
- Answer 5 questions out of 7 carrying 03 marks each = $5 \times 03 = 15$ marks
- Answer 03 questions out of 05 carrying 5 marks each = 03x 5 = 15 marks
- $\blacktriangleright Practical (Mechanics) = 20 Marks$

Laboratory Note Book: 05 Marks

Viva- voce: 05 Marks

Experiment: 40 Marks (This 40 marks will be transformed into 10 Marks)

Topic List Unit-I: CALCULAS

SI. No.	Торіс	Lecture Hours	Name of Teacher(s)
1	Recapitulation: Limits, Continuity, Average and instantaneous quantities, Differentiation. Plotting functions. Intuitive ideas of continuous, differentiable etc. functions and plotting of curves. Approximation: Taylor and binomial series (statements only).	3	Md Ashik Mondal
2	First Order and Second Order Differential equations: First Order Differential Equations and Integrating Factor. Homogeneous Equations with constant coefficients. Wronskian and general solution. Statement of the existence and the Uniqueness theorem for Initial Value Problems. Particular Integral.	9	Md Ashik Mondal
3	Calculus of functions of more than one variable: Partial derivatives, Exact and inexact differentials.	6	Md Ashik Mondal

Unit-II: VECTOR CALCULAS

SI. No.	Торіс	Lecture Hours	Name of Teacher(s)
1	Recapitulation of vectors: Properties of vectors under rotations. Scalar product and its invariance under rotations. Vector product, Scalar triple product and their interpretation in terms of area and volume respectively. Scalar and Vector fields.	5	Md Ashik Mondal
2	Vector Differentiation: Directional derivatives and normal derivative. Gradient of a scalar field and its geometrical interpretation. Divergence and curl of a vector field. Del and Laplacian operators. Vector identities.	6	Md Ashik Mondal
3	Vector Integration: Ordinary integrals of vectors, Multiple integrals, Jacobian. Notion of an infinitesimal line, surface and volume elements. Line, surface and volume integrals of vector fields. Flux of a vector field, Gauss' divergence theorem. Green's and Stokes Theorems and their applications (no rigorous proofs).	10	Md Ashik Mondal
4	Orthogonal Curvilinear Coordinates: Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems.	6	Md Ashik Mondal

Semester-I

Course Type: Skill Enhancement Course (SEC) Course No.: I Course Title: RENEWABLE ENERGY AND ENERGY HARVESTING Course Code: PHYS1051

Evaluation process is divided into three (3) components, viz. C1, C2, and C3.

Total Marks: **50** (10+40), Credits: 3, Lecture Hours: 45

10 Marks for Internal Assessment (will be organized by the College in general and Department in Particular), that is **C1**. 10 Marks will be evaluated through **Class Test** or Assignment or Seminar. Appearance in C1 is mandatory.

Marks division of Class Test will be 10 or **5+5** or 2+2+2+2+2.

Tentative **Date** and **Time** of Class Test or Assignment or Seminar: During the end of the 10th week of the semester when approximately 60% of the syllabus of course is to be completed.

C2 is not applicable for SEC.

40 Marks for Semester-end-Examination (will be organized by University) that is **C3**. Syllabus: Whole

Duration: Two Hours

Question Pattern:

- Answer 5 questions out of 8 carrying 02 marks each = $5 \times 02 = 10$ marks
- Answer 5 questions out of 7 carrying 03 marks each = $5 \times 03 = 15$ marks
- Answer 03 questions out of 05 carrying 5 marks each = 03x 5 = 15 marks

SI.	Topic	Lecture	Name of
No.	Торіс	Hours	Teacher(s)
1	Fossil Fuels and Alternate Sources of Energy:	8	Md Ashik Mondal
2	Solar energy:	8	Md Ashik Mondal
3	Wind Energy harvesting:	5	Md Ashik Mondal
4	Ocean Energy:	5	Md Ashik Mondal
5	Geothermal Energy:	4	Md Ashik Mondal
6	Hydro Energy:	5	Md Ashik Mondal
7	Piezoelectric Energy harvesting:	5	Md Ashik Mondal
8	Electromagnetic Energy Harvesting:	5	Md Ashik Mondal

Topic List

Modules of Classes and Examinations, 2021-22

B.Sc. (GENERAL) IN PHYSICS

Semester-III

Hiralal Bhakat College, Nalhati

Core Course 2C : Thermal physics and Statistical physics

- Total 75 Marks
- ➢ 40 Marks for Semester-end-Examination[#] (will be organized by University)
- > 20 Marks for practical (will be organized by College in general and Department in Particular)
- 10+5=15 Marks for Internal Assessment (will be organized by College in general and Department in Particular)
- > 10 Marks for Class Test/ Assignment/ Seminar
- ➢ 5 Marks for Attendence

Attendence: 50% & above but below 60% - 2 Marks Attendence: 60% & above but below 75% - 3 Marks Attendence: 75% & above but below 90% - 4 Marks

Attendence: 90% & Above - 5 Marks

Internal	Component 1 (C ₁)	Component 2 (C ₂)
Assessment		
Weightage	5 Marks	1.Kinetic Theory of Gases:
Number of	5	Derivation of Maxwell's law of distribution
Questions		of velocities and its experimental
Date	To be announced	verification, Mean free path (Zeroth Order),
Time	To be announced	Transport Phenomena: Viscosity,
Syllabus	1.Laws of Thermodynamics:	Conduction and Diffusion (for vertical case),
	Thermodynamic Description of	Law of equipartition of energy (no
	system:	derivation) and its applications to specific
	Zeroth Law of thermodynamics and	heat of gases; mono-atomic and diatomic
	temperature. First law and internal	gases.
	energy, conversion of heat into work,	2. Theory of Radiation:
	Various Thermodynamical Processes,	Blackbody radiation, Spectral distribution,
	Applications of First Law: General	Concept of Energy Density, Derivation of
	Relation between CP & CV, Work	Planck's law, Deduction of Wien's
	Done during Isothermal and	distribution law, Rayleign-Jeans Law, Stefan
	Adiabatic Processes, Compressibility	Boltzmann Law and Wien's displacement
	& Expansion Coefficient, Reversible &	aw from Planck's law.
	irreversible processes, Second law &	3. Statistical Mechanics:
	Entropy, Carnot's cycle & theorem,	Phase space, Macro state and Micro state,
	Entropy changes in reversible &	An Antipolitzmann low distribution of
	irreversible processes, Entropy-	volocity Quantum statictics Formi Direct
	temperature diagrams, Third law of	distribution law electron gas Pess
	thermodynamics, Unattainability of	Einstein Distribution law nheten as
	absolute zero.	comparison of three statistics
	2. Thermodynamic Potentials:	comparison of three statistics.

Enthalpy, Gibbs, Helmholtz and Internal Energy functions, Maxwell's relations & applications - Joule- Thompson Effect, Clausius-Clapeyron Equation, Expression for (CP – CV), CP/CV, TdS equations	
CP/CV, TdS equations.	

r	-				
Name of	Md Ashik	Md Ashik			
Teacher(s)					
Number of	62 (Tentative)	125 (Tentative)			
Classes					
		·			
Component 2	2:				
➤ 40Ma	rks for Semester-end-Examination (v	will be organized by University)			
➤ Answ	er 5 questions out of 8 carrying 02 m	narks each = $5 \times 02 = 10$ marks			
➤ Answ	er 5 questions out of 7 carrying 03 m	arks each = $5 \times 03 = 15$ marks			
Answ	er 03 questions out of 05 carrying 5	marks each = $03x 5 = 15$ marks			
> Who	le Syllabus of CC 2C				
Practic	\blacktriangleright Practical (Statistical Methods in Geography) = 20 Marks				
Labora	Laboratory Note Book: 05 Marks				
Viva-	Viva- voce: 05 Marks				
Experi	Experiment: 40 Marks (This 40 marks will be transformed into 10 Marks)				
Experiment. To Marks (This to marks will be transformed into 10 Marks)					
A project File (Laboratory Note Rock), comprising one avaraise each is to be					
A project The (Laboratory Note Book), comprising the exercise each is to be					
suomitea.					

Modules of Classes and Examinations, 2021-22

B.Sc. (General) in Physics

Semester-V

Hiralal Bhakat Colllege, Nalhati

DSE 2A

ELEMENT OF MORDERN PHYSICS

- ➢ Total 75 Marks
- ➢ 40 Marks for Semester-end-Examination[#] (will be organized by University)
- > 20 Marks for practical (will be organized by College in general and Department in Particular)
- 10+5=15 Marks for Internal Assessment (will be organized by College in general and Department in Particular)
- > 10 Marks for Class Test/ Assignment/ Seminar
- > 5 Marks for Attendence

Attendence: 50% & above but below 60% - 2 Marks

Attendence: 60% & above but below 75% - 3 Marks Attendence: 75% & above but below 90% - 4 Marks Attendence: 90% & Above - 5 Marks

Internal	Component 1 (C ₁)	Component 2 (C ₂)
Assessment		
Number of	5	1. Planck's quantum, Planck's constant and light
Questions		as a collection of photons; Photo-electric effect
Date	To be announced	and Compton scattering. De Broglie wavelength
Time	To be announced	and matter waves; Davisson – Germer
Syllabus	1. Planck's quantum, Planck's	experiment. (8Lectures) Problems with
Time	constant and light as a collection	Rutherford model- instability of atoms and
	of photons; Photo-electric effect	observation of discrete atomic spectra; Bohr's
	and Compton scattering. De	quantization rule and atomic stability; calculation
	Broglie wavelength and matter	their spectra
	waves; Davisson – Germer	2 Position measurement, gamma ray
	experiment. (8Lectures)	microscope thought experiment: Wave-particle
	Problems with Rutherford	duality Heisenberg uncertainty principle-
	observation of discrete atomic	impossibility of a particle following a trajectory:
	spectra: Bohr's quantization rule	Estimating minimum energy of a confined
	and atomic stability: calculation	particle using uncertainty principle; Energy-time
	of energy levels for hydrogen	uncertainty principle.
	like atoms and their spectra.	4. Two slit interference experiment with
	2. Position measurement-	photons, atoms and particles; linear super
	gamma ray microscope thought	position principle as a consequence; Matter
	experiment; Wave-particle	waves and wave amplitude; Schrodinger
	duality, Heisenberg uncertainty	equation for non- relativistic particles;
	principle- impossibility of a	Momentum and Energy operators; stationary
	particle following a trajectory;	states; physical interpretation of wavefunction,
	Estimating minimum energy of a	probabilities and normalization, Probability and
	confined particle using	
	time uncertainty principle; Energy-	5 One dimensional infinitely rigid hox- energy
	2 Two slit interference	eigenvalues and eigenfunctions, normalization:
	avperiment with photons atoms	Quantum dot as an example: Quantum
	and narticles:linear super	mechanical scattering and tunnelling in one
	position principle as a	dimension - across a step potential and across a
	consequence: Matter waves and	rectangular potential barrier.
	wave amplitude; Schrodinger	6. Size and structure of atomic nucleus and its
	equation for non- relativistic	relation with atomic weight; Impossibility of an
	particles; Momentum and	electron being in the nucleus as a consequence
	Energy operators; stationary	of the uncertainty principle. Nature of nuclear
	states; physical interpretation of	torce, NZ graph, semi-empirical mass formula
	wavefunction, probabilities and	and binding energy.
	normalization; Probability and	/Radioactivity:
	probability current densities in	stability of nucleus; Law of radioactive decay;
	one dimension.	iviean life & decayp decay; αnait-life; -ray
	To be announced	rediction of neutrino: Eission and fusion mass
		prediction of neutrino; Fission and fusion-mass

		deficit, relativity and generation of energy;Fission-nature of fragments and emission of neutrons.8. Nuclear reactor: slow neutrons interacting with Uranium-235; Fusion and thermonuclear reactions
Name of Teachers	Md Ashik Mondal	Md Ashik Mondal

Number of	60 (Tentative)	120 (Tentative)
Classes		

[#]Component 2:

- ➢ 40Marks for Semester-end-Examination (will be organized by University)
- Answer 5 questions out of 8 carrying 02 marks each = $5 \times 02 = 10$ marks
- Answer 5 questions out of 7 carrying 03 marks each = $5 \times 03 = 15$ marks
- Answer 03 questions out of 05 carrying 5 marks each = 03x 5 = 15 marks
- ➢ Whole Syllabus of DSE 2A
- Practical (: ELEMENTS OF MODERN PHYSICS) = 20 Marks Laboratory Note Book: 05 Marks
 Viva- voce: 05 Marks
 Experiment: 40 Marks (This 40 marks will be transformed into 10 Marks)
- A project File (Laboratory Note Book), comprising one exercise each is to be submitted.

Skill Enhancement Course – SEC 3

- ➢ Total 50 Marks
- ▶ 40 Marks(written exam) for Semester-end-Examination[#] (will be organized by University)
- 10 Marks for Class Test/ Assignment (will be organized by College in general and Department in Particular)

Internal	Component 1 (C ₁)	Component 2 (C ₂)
Assessment		
Weightage	5 Marks	
Number of Questions	To be announced	1. Scientific Programming: Some fundamental Linux Commands (Internal and External commands) Development of EOPTRAN Basic
Date	To be announced	 commands). Development of FORTRAN, Ba elements of FORTRAN:CharacterSet, Constants a their types, Variables and their types, Keyword Variable Declaration and concept of instructi and program.
Time	To be announced	
Syllabus	1. Introduction: Importance	

	of computors in Dhusics	2 Operators, Arithmetic Deletional Legisel and
	paradigm for colving physics,	2. Operators: Antifimetic, Relational, Logical and
	paradigiti for solving physics	Assignment Operators. Expressions. Antimetic,
	problems for solution.	Relational, Logical, Character and Assignment
	Usage of linux as an Editor.	Expressions. Fortran Statements: I/O Statements
	2. Algorithms and	(unformatted/formatted), Executable and Non-
	Flowcharts: Algorithm:	Executable Statements, Layout of Fortran Program,
	Definition, properties and	Format of writing Program and concept of coding,
	development. Flowchart:	Initialization and Replacement Logic. Examples
	Concept of flowchart,	from physics problems.
	symbols, guidelines, types.	3. Control Statements: Types of Logic (Sequential,
	Examples: Cartesian to	Selection, Repetition), Branching Statements
	Spherical Polar Coordinates,	(Logical IF, Arithmetic IF, Block IF, Nested Block IF,
	Roots of Quadratic	SELECT CASE and ELSE IF Ladder statements),
	Equation, Sum of two	Looping Statements (DO-CONTINUE, DO-ENDDO,
	matrices, Sum and Product	DO-WHILE, Implied and Nested DO Loops),
	of a finite series, calculation	Jumping Statements (Unconditional GOTO,
	of sin (x) as a series,	Computed GOTO, Assigned GOTO) Subscripted
	algorithm for plotting (1)	Variables (Arrays: Types of Arrays, DIMENSION
	lissajous figures and (2)	Statement, Reading and Writing Arrays), Functions
	trajectory of a projectile	and Subroutines (Arithmetic Statement Function.
	thrown at an angle with the	Function Subprogram and Subroutine), RETURN,
	horizontal	CALL COMMON and FOULVALENCE Statements)
		Structure Disk I/O Statements openafile writing
		in a file reading from a file. Examples from physics
		nrohlems
Nama of	Md Ashik Mondol	Md Ashik Mondel
	WIU ASHIK MOHUAI	
Teacher(s)		
Number of	60 (Tentative)	120 (Tentative)
Classes		

[#]Component 2:

➢ 40Marks for Semester-end-Examination (will be organized by University)

- Answer 5 questions out of 8 carrying 02 marks each = $5 \times 02 = 10$ marks
- Answer 5 questions out of 7 carrying 03 marks each = $5 \times 03 = 15$ marks
- Answer 03 questions out of 05 carrying 5 marks each = 03x 5 = 15 marks
- Internal assessment 10

Coordinator Science Wing Hiralal Bhakat College

Mat Ashilo

Head Department of Physics Hiralal Bhakat College Nalhati,Birbhum

New IL

Principal Hiralal Bhakat College Nalhatl,Birbhum